

TRAINING MATERIALS for Responsible Open Science Part IV: Health and Life Sciences

Authors: Signe Mežinska, Ivars Neiders

Reviewers: Rosemarie Bernabe, Sandra Bendiscioli, Stephanos Cherouvis, Ilaria Anna Colussi, Keziah Chanyisa Khayadi Dash, Su Nee Goh, Eva Hnátková, Margarita Poškutė, Vivian Mbanya, Lilian Kwamboka Mocheche, Mari-Liisa Parder, Vana Stavridi.

Table of Contents

Introduction	
Unit 1. Ethical and societal foundations of OS, its purpose	6
Activity 1. Principles, values, benefits and risks of OS	6
Unit 2. Protection of research participants, animals, plants and ecosystems	in OS 9
Activity 2. Protection of research participants' rights in OS	9
Activity 2.1. Protection of animals, plants, and ecosystems in OS	12
Unit 3. Ethical aspects of citizen science in the context of OS	
Activity 3. Development of an ethically sound citizen science project	14
Activity 3.1. Authorship and contributorship in citizen science	16
Unit 4. Protection of intellectual property in the context of OS	
Activity 4. Should scientists use access to pirated papers?	
Unit 5. Quality of research outputs and data sets	
Activity 5. Responsibility for the quality of research data	20
Activity 5.1. Conflicts of interest	23
Unit 6. Responsible sharing and reuse of open data	25
Activity 6. Concerns to share and reuse data	25
Activity 6.1. Scientists' concerns about open sharing of data	27
Activity 6.2. Ranalysis of data in medicine	
Unit 7. Prevention of research misconduct in the context of OS	
Activity 7. Violations of research integrity in OS and their prevention	
Activity 7.1. Inequities and potential of exploitation in OS	34
Unit 8. Responsible dissemination and publication practices	
Activity 8. Open access publishing and predatory practices	
Activity 8.1. Open peer review	
Activity 8.2. Publishing of preprints	41

Introduction

The aim of the ROSiE Training Materials for Responsible Open Science is to learn how to practice open science (OS) responsibly and how to prevent research misconduct in the context of OS by providing necessary knowledge and developing specific skills and attitudes. In the ROSiE Didactic Framework, we have identified the following transversal skills and attitudes necessary for responsible practising of OS in four domains: (i) local and global citizenship, (ii) personal and social responsibility, (iii) epistemic skills, and (iv) collaborative problem-solving.

Local and global citizenship

- awareness of the importance and social benefits of OS and citizen science in local and global contexts
- participation in ethics and integrity self-regulation of OS and citizen science community

Personal and social responsibility

- personal and professional responsibility for implementation of OS and production of results
- openess to share own research data, results, tools and publications and appreciation of efforts of others

Epistemic skills

- ability to organize, present and use open data and knowledge with integrity
- ability to critically assess data, knowledge and scientific results produced by others
- ability to identify ethical and integrity issues in OS

Collaborative problem-solving

- ability to apply critical thinking skills in collaborative analysis of ethical and integrity problems in OS

- discussing, finding solutions and making desicions to handle ethics and integrity issues within OS community

To achieve optimal results, the ROSiE training materials rely on several learning and teaching strategies: (i) collaborative problem solving; (ii) case-based activities; (iii) dialogical activities; and (iv) transformative learning. More information about these teaching strategies can be found in the ROSiE Didactic Framework.

The training material consists of a trainers' file including 8 units and respective activities, as well as a separate folder including materials for trainees – handouts and printouts. The activities can be implemented separately (e.g., for organising a single workshop to discuss cases) or for organising a complete two-day training course. The suggested schedule for the training course is as follows:

Time	DAY 1	Type of activity
90 min.	Unit 1. Ethical and societal foundations of OS, its purpose	Home readings and
		Socratic seminar
15 min.	Break	
90 min.	Unit 2. Protection of research participants, animals, plants and ecosystems in OS	Case discussions
60 min.	Lunch break	
90 min.	Unit 3. Ethical aspects of citizen science in the context of OS	Home readings and group project OR Case discussion
15 min.	Break	
90 min.	Unit 4. Protection of intellectual property in the context of OS	Case discussion
Time	DAY 2	Type of activity
90 min.	Unit 5. The quality of the research outputs and data sets	Home reading and case discussion OR Case discussion
15 min.	15 min. Break	
90 min.	Unit 6. Responsible sharing and reuse of open science data	Brainstorming and group discussion OR Case discussion
60 min.	Lunch break	
90 min.	Unit 7. Prevention of research misconduct in the context of OS	Group work and plenary activity OR Case discussion
15 min.	Break	
90 min.	Unit 8. Responsible dissemination and publication practices	Case discussion

Additionally, trainers can use the <u>ROSiE online training course</u> as a complementary resource to this training material. Students and researchers can use ROSiE online learning modules to implement **self-directed learning.** In this case, the trainee as a user of online ROSiE training materials takes the initiative, with or without the help of the trainer, determines his/her learning needs, formulates learning goals and evaluates learning outcomes. In this

process, trainees are in charge of their learning, and they are autonomous in choosing what, how and where they are learning. Online training materials can also be used for the implementation of **blended learning**, which combines traditional on-site training led by a trainer with using online content to allow trainees to build their own learning experience. By blending face-to-face and online training methods, trainees can benefit from guidance and interaction with a trainer while having access to interactive and flexible training opportunities outside the classroom. Blended learning allows development of **multimodal learning** through visual, auditory, reading, discussion and writing methods. Multimodal learning expands inclusive learning opportunities.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under GA No 101006430

Unit 1. Ethical and societal foundations of OS, its purpose

Activity 1. Principles, values, benefits and risks of OS

DESCRIPTION

This activity starts with homework where trainees are asked to read <u>UNESCO</u> <u>Recommendation on Open Science</u> and fill in the double-entry reading journal. The purpose of the reading journal is to allow trainees to express their thoughts and reflect on the text. It is followed by classroom discussion in a form of a Socratic seminar on the principles and values of OS, as well as the main benefits and challenges in OS implementation.

Type of activity: home reading and Socratic seminar

Time: 90 min.

Target groups: students, early career researchers, senior researchers

Blended learning options: <u>ROSiE online training course</u> \rightarrow Responsible Open Science \rightarrow Health and Life Sciences \rightarrow Ethical and societal foundations of open science

Learning outcomes:

	Learning outcomes It is expected that trainees will:	Indicators for their achievement Trainees who have fully met the learning outcome are able to:
	 demonstrate knowledge of ethical foundations of OS 	 explain and discuss principles and values of OS, its ethical foundations, and social benefits
Ŷ	 understand the significance of OS and citizen science for identifying and solving scientific problems and societal challenges 	 provide examples of role of OS and citizen science in identifying and solving scientific problems and societal challenges

- 1. At least a week before the workshop send trainees the required readings <u>UNESCO</u> <u>Recommendation on Open Science</u> and the handout (file "HL_U1A1 Handout").
- 2. Before the workshop trainees are required to read parts I., II. and III. of the <u>UNESCO</u> <u>Recommendation on Open Science (pp. 6-19)</u>.
- 3. Before the workshop trainees should fill in the double-entry reading journal table in the handout (file "HL_U1A1 Handout"). The left side should contain quotations from the UNESCO Recommendation on Open Science with page numbers noted. The right

Training Materials for Responsible Open Science

side should contain trainee's response to each quotation - a question, commentary, analysis. When filling in the table, trainees may use the following prompts, included in the handout:

- I agree/disagree with..., because...
- It is not clear for me...
- I see the following challenges...
- I have a question regarding...
- 4. The classroom discussion is organized as a Socratic seminar. The aim of the Socratic seminar is to achieve "*a deeper understanding about the ideas and values in a particular text*"¹. The trainer is facilitator of the discussion, the discussion is led by using open-ended, high-level questions. Trainees are sitting in a circle.
- 5. The Socratic Seminar starts with introduction of the rules:
 - Only those trainees who have read the text and filled in the double-entry reading journal are allowed to participate;
 - It is important to focus on the text and to refer to evidence from the text;
 - Trainees are encouraged to talk to each other, not just to the trainer and to listen and respond to others' arguments.
- 6. Common questions used during a Socratic Seminar activity both by trainer and trainees include:
 - What does this concept/idea/phrase etc. mean?
 - What do you think the authors are trying to say?
 - Is this what you mean to say ...?
 - What is the origin of this?
 - What are the implications of this?
 - What else could that mean?
 - What would happen if....?
- 7. This <u>overview of Socratic seminar</u> provides a list of suitable questions and more information about how to prepare for a discussion.

PLANNING

Resources and equipment:

- Handout "HL_U1A1 Handout"

This project has received funding from the European Union's Horizon 2020 research and innovation programme under GA No 101006430

¹ Castellanos-Reyes, D. (2020). Socratic Seminar. In R. Kimmons & S. Caskurlu (Eds.), *The Students' Guide to Learning Design and Research*. EdTech Books. https://edtechbooks.org/studentguide/socratic_seminar

⁷

- Required readings UNESCO Recommendation on Open Science
- Make space for the trainees to sit in a circle

FURTHER READINGS

- Allen, C., & Mehler, D. M. A. (2019). Open science challenges, benefits and tips in early career and beyond. *PLOS Biology*, 17(5), e3000246. <u>https://doi.org/10.1371/journal.pbio.3000246</u>
- Castellanos-Reyes, D. (2020). Socratic Seminar. In R. Kimmons & S. Caskurlu (Eds.), *The Students' Guide to Learning Design and Research*. EdTech Books. <u>https://edtechbooks.org/studentguide/socratic seminar</u>
- 3. Düwell, M. (2019). Open science and ethics. *Ethical Theory and Moral Practice*, 22(5), 1051-1053. <u>https://doi.org/10.1007/s10677-019-10053-3</u>
- Tennant, J. P., Waldner, F., Jacques, D. C., Masuzzo, P., Collister, L. B., & Hartgerink, C. H. (2016). The academic, economic and societal impacts of Open Access: an evidencebased review. *F1000Research*, 5. <u>https://doi.org/10.12688/f1000research.8460.3</u>

Unit 2. Protection of research participants, animals, plants and ecosystems in OS

Activity 2. Protection of research participants' rights in OS

DESCRIPTION

This activity is built around case discussion. Trainees are asked to discuss in small groups one or two cases on ethical issues in sharing data and research results in open access in health and life sciences. Afterwards, small groups report to the whole group and continue with a reflective discussion involving the whole group.

Type of activity: case discussion

Time: 90 min.

Target group: students, early career researchers, senior researchers

Blended learning options: <u>ROSiE online training course</u> \rightarrow Responsible Open Science \rightarrow Health and Life Sciences \rightarrow Protection of research participants rights in open science

Learning outcomes:

Learning outcomes It is expected that trainees will:	Indicators for their achievement Trainees who have fully met the learning outcome are able to:
 recognize and analyse the risks to research participants in the context of OS 	 discuss how to minimize risks to research participants when practicing OS
 apply critical thinking skills - questioning, comparing, summarizing, drawing conclusions, and defending - to case studies on ethics and integrity in OS 	 develop reflective questions to define ethical problems in the case study discuss cases with colleagues justify a personal position on the case

PROCEDURE

- Depending on the size of the group and background of the trainees choose whether you will discuss one or both cases during the workshop. The cases are included in the file "HL_U2A2 Handout". You can also choose to watch one of the cases in the classroom - animation of this case is available on the <u>ROSiE Knowledge Hub</u>.
- 2. Introduce the activity, its aim and, briefly, the procedure.
- 3. Ask trainees to split in small groups (4-5 trainees in a group) and to choose a rapporteur a group member who will report results of the small group discussion to the whole group. Provide each group with a paper for taking notes.

- 4. Print out case description(s) and questions for discussion for each trainee (file "HL_U2A2 Handout").
- Step 1: small group discussions 30 minutes. Trainees read the case description and discuss the questions in small groups. Each group takes notes. Rapporteurs prepare to present the results to the whole group.
- 6. **Step 2**: reports from small group discussions **40 minutes**. Depending on the number of the small groups, allocate a time slot for each group presentation (e.g., if there are 4 small groups, each group has 10 minutes for a presentation). Rapporteurs present the results of their group discussions.
- 7. **Step 3**: group discussion **20 minutes**. The trainer moderates a reflective group discussion. The trainer writes the ideas suggested during the discussion on the whiteboard and summarise them. Sample questions for reflective discussion are, e.g.:
 - How to inform research participants about open sharing of data and obtain informed consent?
 - What makes health and genomic data special? What scientists should take into account before sharing health and genomic data?
 - How to ensure the privacy of research participants? Is it possible to anonymize health and genetic data?

PLANNING

Resources and equipment:

- Handout "HL_U2A2 Handout" and/or video of case animation available on the <u>ROSiE</u> <u>Knowledge Hub</u>
- Paper for taking notes during small group discussions
- Whiteboard for discussion notes
- Make space for the trainees to work in small groups

FURTHER READINGS

- Akyüz, K., Goisauf, M., Chassang, G., Kozera, Ł., Mežinska, S., Tzortzatou-Nanopoulou, O., & Mayrhofer, M. T. (2023). Post-identifiability in changing sociotechnological genomic data environments. *BioSocieties*, 1-28. <u>https://doi.org/10.1057/s41292-023-00299-7</u>
- 2. Berger, B., & Cho, H. (2019). Emerging technologies towards enhancing privacy in genomic data sharing. *Genome biology*, *20*(1), 1-3. <u>https://doi.org/10.1186/s13059-019-1741-0</u>
- 3. Eisen, M. (2013). The Immortal Consenting of Henrietta Lacks. https://www.michaeleisen.org/blog/?p=1341
- 4. Gymrek, M., McGuire, A. L., Golan, D., Halperin, E., & Erlich, Y. (2013). Identifying personal genomes by surname inference. *Science*, *339*(6117), 321-324. https://doi.org/10.1126/science.1229566

This project has received funding from the European Union's Horizon 2020 research and innovation programme under GA No 101006430

- Roguljić, M., Šimunović, D., Poklepović Peričić, T., Viđak, M., Utrobičić, A., Marušić, M., & Marušić, A. (2022). Publishing Identifiable Patient Photographs in Scientific Journals: Scoping Review of Policies and Practices. *Journal of Medical Internet Research*, 24(8), e37594. <u>https://doi.org/10.2196/37594</u>
- 6. The Embassy of Good Science: "Privacy in research"

Activity 2.1. Protection of animals, plants, and ecosystems in OS

DESCRIPTION

This activity is built around case discussion. Trainees are asked to discuss in small groups a case on ethical issues in sharing data related to protection of animals, plants and ecosystems in open access. Afterwards, small groups report to the whole group and continue with a reflective discussion involving the whole group.

Type of activity: case discussion

Time: 90 min.

Target group: students, early career researchers, senior researchers

Blended learning options: <u>ROSiE online training course</u> \rightarrow Responsible Open Science \rightarrow Health and Life Sciences \rightarrow Risks to the environment, animals, plants, and ecosystems

Learning outcomes:

	Learning outcomes It is expected that trainees will:	Indicators for their achievement Trainees who have fully met the learning outcome are able to:
653	 recognize and analyse the risks to environment, plants, animals, and ecosystems in the context of OS 	 discuss how to minimize risks to environment, plants, animals, and ecosystems when practicing OS
	 apply critical thinking skills - questioning, comparing, summarizing, drawing conclusions, and defending - to case studies on ethics and integrity in OS 	 develop reflective questions to define ethical problems in the case study discuss cases with colleagues justify a personal position on the case

- 1. Introduce the activity, its aim and, briefly, the procedure.
- 2. Ask trainees to split in small groups (4-5 trainees in a group) and to choose a rapporteur a group member who will report results of the small group discussion to the whole group. Provide each group with a paper for taking notes.
- 3. Print out the case description and questions for discussion for each trainee (file "HL_U2A2.1 Handout").
- 4. **Step 1**: small group discussions **30 minutes**. Trainees read the case description and discuss the questions in small groups. Each group takes notes. Rapporteurs prepare to present the results to the whole group.
- 5. **Step 2**: reports from small group discussions **40 minutes**. Depending on the number of the small groups, allocate a time slot for each group presentation (e.g., if

there are 4 small groups, each group has 10 minutes for a presentation). Rapporteurs present the results of their group discussions.

- 6. **Step 3**: group discussion **20 minutes**. The trainer moderates a reflective group discussion. The trainer writes the ideas suggested during the discussion on the whiteboard and summarise them. Sample questions for reflective discussion are, e.g.:
 - What makes data on animal and plant species and ecosystems special?
 - What scientists should take into account before sharing data on animal and plant species and ecosystems?
 - Who is responsible for protection of animals, plants and ecosystems in the context of OS?

PLANNING

Resources and equipment:

- Handout "HL_U2A2.1 Handout"
- Paper for taking notes during small group discussions
- Whiteboard for discussion notes
- Make space for the trainees to work in small groups

FURTHER READINGS

- Cooke, S. J. et al. (2017). Troubling issues at the frontier of animal tracking for conservation and management. *Conservation Biology*, 31(5), 1205–1207. <u>https://doi.org/10.1111/cobi.12895</u>
- Quinn, A. (2021). Transparency and secrecy in citizen science: Lessons from herping. Studies in History and Philosophy of Science Part A, 85, 208–217. <u>https://doi.org/10.1016/j.shpsa.2020.10.010</u>
- 3. Soroye, P. et al. (2022). The risks and rewards of community science for threatened species monitoring. *Conservation Science and Practice*, 4(9), e12788. <u>https://doi.org/10.1111/csp2.12788</u>
- Tulloch, A. I. T. et al. (2018). A decision tree for assessing the risks and benefits of publishing biodiversity data. *Nature Ecology & Evolution*, 2(8), Article 8. <u>https://doi.org/10.1038/s41559-018-0608-1</u>

Unit 3. Ethical aspects of citizen science in the context of OS

Activity 3. Development of an ethically sound citizen science project

DESCRIPTION

This activity involves home reading before the classroom activity, to introduce the concept of citizen science in the context of health and life sciences. It is followed by group projects onsite where trainees are asked to develop idea for their own citizen science projects in health or life sciences and analyse ethical aspects of these projects.

Type of activity: home reading and group project

Time: 90 minutes

Target group: students, early career researchers, senior researchers

Learning outcomes:

	Learning outcomes It is expected that trainees will:	Indicators for their achievement Trainees who have fully met the learning outcome are able to:
Ø	 understand the significance of citizen science for identifying and solving scientific problems and societal challenges 	 provide examples for role of citizen science in identifying and solving scientific problems and societal challenges

- At least one week before the workshop, send trainees the required readings: <u>Wiggnins & Wilbanks (2019)</u> and/or <u>Fiske et al. (2019)</u>². You can use both or one of the readings depending on circumstances and your preferences.
- 2. During the workshop, introduce the group activity, its aim and briefly, the procedure.
- 3. Ask trainees to split into three groups. The group task is to develop an idea for a citizen science project in health or life sciences, based on definitions and examples

This project has received funding from the European Union's Horizon 2020 research and innovation programme under GA No 101006430

² Wiggnins, A., Wilbanks, J. (2019). The rise of citizen science in health and biomedical research. *The American Journal of Bioethics*, 19(8), 3-14. <u>https://doi.org/10.1080/15265161.2019.1619859</u> Fiske, A., Prainsack, B., & Buyx, A. (2019). Meeting the needs of underserved populations: Setting the agenda for more inclusive citizen science of medicine. *Journal of Medical Ethics*, 45(9), 617–622. <u>https://doi.org/10.1136/medethics-2018-105253</u>

provided in the required readings. For taking notes print one copy of "HL_U3A3 Handout" for each group.

- 4. **Step 1** development of the project idea **30 minutes**. Each group should discuss and fill in table 1 in the "HL_U3A3 Handout".
- 5. **Step 2** reflection on ethical aspects of the project **30 minutes**. Each group should discuss and fill in table 2 in the "HL_U3A3 Handout".
- 6. **Step 3** presentation of group projects and general discussion **30 minutes**. Sample questions for reflective discussion are, e.g.:
 - What does citizen life science can add to the field of health and life sciences?
 - What are the main ethical challenges and their solutions in citizen science projects in health and life sciences?

PLANNING

Resources and equipment:

- Readings Wiggnins & Wilbanks (2019) and/or Fiske et al. (2019)
- Handout "HL_U3A3 Handout"
- Paper for taking notes during small group discussions
- Whiteboard for discussion notes
- Make space for the trainees to work in small groups

FURTHER READINGS

- Balázs, B., Mooney, P., Nováková, E., Bastin, L., Jokar Arsanjani, J. (2021). Data Quality in Citizen Science. In: *The Science of Citizen Science*. Springer <u>https://doi.org/10.1007/978-3-030-58278-4_8</u>
- Palmer, R.B., Brocklehurst, M., Tyson E., Bowser, A., Pauwels, E., Bartumeus, F., (2018). Global mosquito alert. Chapter 11 In: Hecker, S., Haklay, M., Bowser, A., Makuch, Z., Vogel, J. & Bonn, A. (Eds.) *Citizen Science: Innovation in Open Science, Society and Policy*. UCL Press, London, pp. 210-215. <u>https://doi.org/10.14324/111.9781787352339</u>

Activity 3.1. Authorship and contributorship in citizen science

DESCRIPTION

This activity is built around case discussion and involves evaluating pro and contra arguments for different types of acknowledging citizen scientist contributions to research. Trainees are asked to discuss the case in small groups, develop and discuss their arguments. Afterwards, small groups report to the whole group and continue with a reflective discussion involving the whole group.

Type of activity: case discussion

Time: 90 min.

Target group: students, early career researchers, senior researchers

Blended learning options: <u>ROSiE online training course</u> \rightarrow Responsible Open Science \rightarrow Health and Life Sciences \rightarrow Ethical aspects of citizen science

Learning outcomes:

	Learning outcomes	Indicators for their achievement
	It is expected that trainees will:	Trainees who have fully met the learning
		outcome are able to:
\$-8	- be aware of citizen scientists' right to	 discuss and assert their right to be
6400	be recognised and acknowledged by	recognized and acknowledged by
	academic scientists and society	academic scientists and society
	 apply critical thinking skills - 	- develop reflective questions to define
	questioning, comparing, summarizing,	ethical problems in the case study
)Y(drawing conclusions, and defending -	 discuss cases with colleagues
	to case studies on ethics and integrity	- justify a personal position on the case
	in OS	

- 1. Introduce the activity, its aim and, briefly, the procedure.
- 2. Ask trainees to split in small groups (3-4 trainees in a group) and to choose a rapporteur a group member who will report results of the small group discussion to the whole group.
- 3. Print out the case description and questions for discussion for each trainee (file "HL_U3A3.1 Handout". You can also choose to watch the case in the classroom animation of this case is available on the <u>ROSiE Knowledge Hub</u>.
- 4. **Step 1**: small group discussions **30 minutes**. Trainees read or watch the case and discuss the questions in small groups. Each group fills in the table included in the handout with pro and contra arguments. Rapporteurs prepare to present the results to the whole group.

- 5. **Step 2**: short reports from small group discussions **20 minutes**. Rapporteurs present the results of their group discussions pro and contra arguments for each type of acknowledging the contribution of citizen scientists in this case.
- 6. **Step 3**: group discussion **40 minutes**. The trainer moderates a reflective group discussion. Sample questions for reflective discussion are, e.g.:
 - Based on the pro and contra arguments developed during the group work, what is the best solution for this case?
 - Do you have other suggestions for recognizing the contribution of citizen scientists in scientific publications?

PLANNING

Resources and equipment:

- Handout "HL_U3A3.1 Handout" and/or video of case animation available on the <u>ROSiE</u> <u>Knowledge Hub</u>
- Paper for taking notes during small group discussions
- Whiteboard for discussion notes
- Make space for the trainees to work in small groups

FURTHER READINGS

- 1. COPE Council (2003). How to Handle Authorship Disputes: A Guide for New Researchers. <u>https://doi.org/10.24318/cope.2018.1.1</u>
- 2. ICMJE. Defining the role of authors and contributors. <u>https://bit.ly/N7uoq3</u>
- 3. Smith, E., Bélisle-Pipon, J. C., & Resnik, D. (2019). Patients as research partners; how to value their perceptions, contribution and labor? *Citizen science: theory and practice*, *4*(1). <u>https://doi.org/10.5334/cstp.184</u>
- 4. The Embassy of Good Science: "Authorship criteria"
- Vasilevsky, N. A. et al. (2021). Is authorship sufficient for today's collaborative research? A call for contributor roles. *Accountability in Research*, 28(1), 23-43. <u>https://doi.org/10.1080/08989621.2020.1779591</u>

Unit 4. Protection of intellectual property in the context of OS

Activity 4. Should scientists use access to pirated papers?

DESCRIPTION

This activity is built around case discussion. Trainees are asked to discuss in small groups a case on violations of intellectual property rights by providing access to pirated scientific publications. Afterwards, small groups report to the whole group and continue with a reflective discussion involving the whole group.

Type of activity: case discussion

Time: 90 minutes

Target group: students, early career researchers, senior researchers

Blended learning options: <u>ROSiE online training course</u> \rightarrow Responsible Open Science \rightarrow Health and Life Sciences \rightarrow Protection of intellectual property in the context of open science

Learning outcomes:

Learning outcomes It is expected that trainees will:	Indicators for their achievement Trainees who have fully met the learning outcome are able to:
 be aware of protection of intellectual property in OS 	 acknowledge authors and contributors of open data sets and other research outputs
 apply critical thinking skills - questioning, comparing, summarizing, drawing conclusions, and defending - to case studies on ethics and integrity in OS 	 develop reflective questions to define ethical problems in the case study discuss cases with colleagues justify a personal position on the case

- Print out the case description and questions for discussion for each trainee (file "HL_U4A4 Handout". You can also choose to watch the case in the classroom animation of this case is available on the <u>ROSiE Knowledge Hub</u>.
- 2. Introduce the activity, its aim and, briefly, the procedure.
- 3. Ask trainees to split in small groups (4-5 trainees in a group) and to choose a rapporteur a group member who will report results of the small group discussion to the whole group. Provide each group with a paper for taking notes.

- 4. **Step 1**: small group discussions **30 minutes**. Trainees read the case description and discuss the questions in small groups. Each group takes notes. Rapporteurs prepare to present the results to the whole group.
- Step 2: reports from small group discussions 30 minutes. Depending on the number of the small groups, allocate a time slot for each group presentation (e.g., if there are 4 small groups, each group have 10 minutes for a presentation). Rapporteurs present the results of their group discussions.
- 6. **Step 3**: group discussion **30 minutes**. The trainer moderates a reflective group discussion. The trainer writes the ideas suggested during the discussion on the whiteboard and summarises them. Sample questions for reflective discussion are, e.g.:
- *How important are intellectual property rights for scientific research and achievements?*
- Does the case address a relevant issue for you and researchers you are working together?
- What are potential solutions at the policy level to the problem described in the case?

PLANNING

Resources and equipment:

- Handout "HL_U4A4 Handout" and/or video of case animation available on the <u>ROSiE</u> <u>Knowledge Hub</u>
- Paper for taking notes during small group discussions
- Whiteboard for discussion notes
- Make space for the trainees to work in small groups

FURTHER READINGS

- Bender, M. 'It's a Moral Imperative:' Archivists made a directory of 5000 Coronavirus studies to bypass paywalls. *Vice,* February 3, 2020. <u>https://www.vice.com/en/article/z3b3v5/archivists-are-bypassing-paywalls-to-sharestudies-about-coronaviruses</u>
- Monbiot, G. Scientific publishing is a rip-off. We fund the research it should be free. *The Guardian*. September 13, 2018. <u>https://www.theguardian.com/commentisfree/2018/sep/13/scientific-publishing-rip-off-taxpayers-fund-research</u>.
- 3. Plan S (2018). Open Access is Foundational to the Scientific Enterprise. <u>https://www.coalition-s.org/why-plan-s/</u>
- 4. Van Noorden, R. (2016). Alexandra Elbakyan: Paper pirate. *Nature*, 540, 512. https://doi.org/10.1038/540507a
- 5. Vogel, G., & Kupferschmidt, K. (2017). A bold open-access push in Germany could change the future of academic publishing. *Science*, *23*. <u>https://doi.org/10.1126/science.aap7562</u>

Unit 5. Quality of research outputs and data sets

Activity 5. Responsibility for the quality of research data

DESCRIPTION

This activity starts with homework where trainees are asked to read a paper on data quality in citizen science and create a mind map. The purpose of the mind map is to build a background knowledge for case discussion. It is followed by case discussion and development of guidelines for ensuring quality of citizen sciences data in health and life sciences.

Type of activity: home reading and case discussion

Time: 90 min.

Target group: students, early career researchers

Blended learning options: <u>ROSiE online training course</u> \rightarrow Responsible Open Science \rightarrow Health and Life Sciences \rightarrow Quality of research outputs and data sets

Learning outcomes:

		Learning outcomes It is expected that trainees will:		Indicators for their achievement Trainees who have fully met the learning outcome are able to:
P	d	be aware of importance of the quality of lata sets and research outputs in OS and heir responsible use		explain how to responsibly and critically assess and use open data and research outputs
	C C	pply critical thinking skills - questioning, omparing, summarizing, drawing onclusions, and defending - to case tudies on ethics and integrity in OS	-	develop reflective questions to define ethical problems in the case study discuss cases with colleagues justify a personal position on the case

PROCEDURE

1. At least a week before the workshop, send trainees the required readings <u>Balázs et al.</u> (2021)³ and the handout for creating a mind map (file "HL_U5A5_1 Handout"). Before the workshop trainees are asked to read the required readings <u>Balázs et al. (2021)</u>.

20

This project has received funding from the European Union's Horizon 2020 research and innovation programme under GA No 101006430

³ Balázs, B., Mooney, P., Nováková, E., Bastin, L., Jokar Arsanjani, J. (2021). Data Quality in Citizen Science. In: The Science of Citizen Science. Springer <u>https://doi.org/10.1007/978-3-030-58278-4_8</u>.

- 2. Before the workshop trainees should create a mind map on the quality of data in citizen science, based on the required readings. Instructions for creating a mind map are included in the handout "HL_U5A5_1 Handout".
- 3. In the classroom, introduce the activity, its aim and, briefly, the procedure.
- 4. Ask trainees to split in small groups (4-6 trainees in a group) and to choose a rapporteur a group member who will report results of the small group discussion to the whole group.
- 5. Print out the case description (file "HL_U5A5_2 Handout") for each trainee.
- 6. Step 1: small group discussions 40 minutes. Trainees read or watch the case, discuss the challenges, use the ideas from required readings and develop recommendations. Each group fills in a table with challenges and recommendations. The table is included in the "HL_U5A5_2 Handout". Rapporteurs prepare to present the results to the whole group.
- Step 2: reports from small group discussions 30 minutes. Depending on the number of the small groups, allocate a time slot for each group presentation (e.g., if there are 3 small groups, each group have 10 minutes for a presentation). Rapporteurs present the results of their group discussions.
- 8. **Step 3**: group discussion **20 minutes**. The trainer moderates a reflective group discussion. Sample questions for reflective discussion are, e.g.:
 - Which ideas from the required readings helped you to develop recommendations? How?
 - Which of the recommendations developed during the groupwork are the most useful? Why?
 - In your view, what are other considerable ethical challenges for scientists collaborating with citizen scientists? How to address these challenges?

PLANNING

Resources and equipment:

- Required readings Balázs et al. (2021)
- Handout "HL_U5A5_1 Handout" for home reading and creating a mind map
- Handout "HL_U5A5_2 Handout" for case discussion
- Paper for taking notes during small group discussions
- Whiteboard for discussion notes
- Make space for the trainees to work in small groups

FURTHER READINGS

 Haklay, M. (2021). Why is it so difficult to integrate citizen science into practice? *Citizen Science and Public Policy Making*, 108. <u>https://discovery.ucl.ac.uk/id/eprint/10130136</u>.

Activity 5.1. Conflicts of interest

DESCRIPTION

This activity is built around case discussion. Trainees are asked to discuss in small groups a case on risk conflicts of interest in citizen science. Afterwards, small groups report to the whole group and continue with a reflective discussion involving the whole group.

Type of activity: case discussion

Time: 90 min.

Target group: students, early career researchers, senior researchers

Blended learning options: <u>ROSiE online training course</u> \rightarrow Responsible Open Science \rightarrow Health and Life Sciences \rightarrow Quality of research outputs and data sets

Learning outcomes:

	Learning outcomes It is expected that trainees will:	Indicators for their achievement Trainees who have fully met the learning outcome are able to:
	 understand the concept of conflict of interest and how to deal with it 	 recognize and disclose conflicts of interest in cases when citizen scientists have personal or political interests at stake
	 apply critical thinking skills - questioning, comparing, summarizing, drawing conclusions, and defending - to case studies on ethics and integrity in OS 	 develop reflective questions to define ethical problems in the case study discuss cases with colleagues justify a personal position on the case

- Print out the case description and questions for discussion for each trainee (file "HL_U5A5.1 Handout". You can also choose to watch the case in the classroom animation of this case is available on the <u>ROSiE Knowledge Hub</u>.
- 2. Introduce the activity, its aim and, briefly, the procedure.
- 3. Ask trainees to split in small groups (4-5 trainees in a group) and to choose a rapporteur a group member who will report results of the small group discussion to the whole group. Provide each group with a paper for taking notes.
- Step 1: small group discussions 30 minutes. Trainees read the case description and discuss the questions in small groups. Each group takes notes. Rapporteurs prepare to present the results to the whole group.
- 5. **Step 2**: reports from small group discussions **30 minutes**. Depending on the number of the small groups, allocate a time slot for each group presentation (e.g., if

there are 4 small groups, each group have 10 minutes for a presentation). Rapporteurs present the results of their group discussions.

- 6. **Step 3**: group discussion **30 minutes**. The trainer moderates a reflective group discussion. The trainer writes the ideas suggested during the discussion on the whiteboard and summarises them. Sample questions for reflective discussion are, e.g.:
- What is your personal experience with conflicts of interest in research?
- What types of conflicts of interest should be disclosed? Is there a consensus on that in your field of science?
- Do conflicts of interest in citizen science differ from conflicts of interest in science in general? If yes, what is the difference?
- How to deal with conflicts of interest in cases where they are discovered after the publication of a research study?

PLANNING

Resources and equipment:

- Handout "HL_U5A5.1 Handout" and/or video of case animation available on the <u>ROSiE</u> <u>Knowledge Hub</u>
- Paper for taking notes during small group discussions
- Whiteboard for discussion notes
- Make space for the trainees to work in small groups

FURTHER READINGS

- 1. COPE Council (2021). COPE Flowcharts and infographics: Undisclosed conflict of interest in a published article. <u>https://doi.org/10.24318/cope.2019.2.7</u>
- Macey, G. P., Breech, R., Chernaik, M., Cox, C., Larson, D., Thomas, D., & Carpenter, D. O. (2014). Air concentrations of volatile compounds near oil and gas production: a community-based exploratory study. *Environmental Health*, *13*(1), 1-18. https://doi.org/10.1186/1476-069X-13-82
- Resnik, D. B., Konecny, B., & Kissling, G. E. (2017). Conflict of interest and funding disclosure policies of environmental, occupational, and public health journals. *Journal of occupational and environmental medicine*, 59(1), 28. <u>https://doi.org/10.1097/JOM.0000000000910</u>
- 4. The Embassy of Good Science: "Conflict of interests", "Intellectual conflicts of interest"

Unit 6. Responsible sharing and reuse of open data

Activity 6. Concerns to share and reuse data

DESCRIPTION

This activity starts with brainstorming where trainees are asked to share their views on sharing and reusing research data. It is followed by group discussion on concerns to share and reuse data, as well as possible solutions.

Type of activity: brainstorming and group discussion

Time: 90 min.

Target group: early career researchers, senior researchers

Blended learning options: <u>ROSiE online training course</u> \rightarrow Responsible Open Science \rightarrow Health and Life Sciences \rightarrow Responsible sharing and reuse of data and other research outputs

Learning outcomes:

Learning outcomes It is expected that trainees will:	Indicators for their achievement Trainees who have fully met the learning outcome are able to:
 be aware about factors influencing willingness to share and use open research data 	 discuss how to increase willingness to share and use open research data

- Step 1: brainstorming 15 minutes. The trainer starts brainstorming by posing two questions: (1) "Are you ready to share your research data in an open data repository? Why yes or no?" and (2) "Are you ready to use open access data in your research? Why yes or no?" and invite trainees to take a minute's silence to think about it. Once the minute is up, invite everyone to share their views. Have a single person (trainer or one of trainees) who takes notes on a whiteboard. The main aim of brainstorming is just to listen to different views without criticism.
- 2. Ask trainees to split into small groups (4-6 trainees in a group) and to choose a rapporteur a group member who will report results of the small group discussion to the whole group.

- 3. Distribute the handout (file "HL_U6A6 Handout") to each group. Half of the groups receive Task 1 from the handout ("Sharing your own research data"), other groups get Task 2 from the handout ("Using open data created by other researchers").
- 4. **Step 2**: small group discussions **30 minutes**. Trainees discuss and fill in a table with concerns and possible solutions. Rapporteurs prepare to present the results to the whole group.
- Step 3: reports from small group discussions 30 minutes. Depending on the number of small groups, allocate a time slot for each group presentation (e.g., if there are 3 small groups, each group have 10 minutes for a presentation). Rapporteurs present the results of their group discussions.
- 6. **Step 3**: group discussion **15 minutes**. The trainer moderates a reflective group discussion. Sample questions for reflective discussion are, e.g.:
 - What are the most important concerns discouraging researchers from sharing their data for reuse and to use open data created by other researchers? What are possible solutions?
 - How to responsibly share and reuse data in health and life sciences?

PLANNING

Resources and equipment:

- Handout "HL_U6A6 Handout"
- Paper for taking notes during small group discussions
- Whiteboard for discussion notes
- Make space for the trainees to work in small groups

FURTHER READINGS

- 1. Data sharing and the future of science. *Nature Communications* 9, 2817 (2018). https://doi.org/10.1038/s41467-018-05227-z
- Gewin, V. (2016). Data sharing: An open mind on open data. *Nature*, *529*(7584), 117-119. <u>https://doi.org/10.1038/nj7584-117a</u>
- Staunton, C., Barragán, C. A., Canali, S., Ho, C., Leonelli, S., Mayernik, M., ... & Wonkham, A. (2021). Open science, data sharing and solidarity: who benefits? *History and Philosophy of the Life Sciences*, *43*(4), 115. <u>https://doi.org/10.1007/s40656-021-</u> 00468-6
- Zuiderwijk, A., Shinde, R., & Jeng, W. (2020). What drives and inhibits researchers to share and use open research data? A systematic literature review to analyze factors influencing open research data adoption. *PloS one*, *15*(9), e0239283. <u>https://doi.org/10.1371/journal.pone.0239283</u>

Activity 6.1. Scientists' concerns about open sharing of data

DESCRIPTION

This activity is built around case discussion. Trainees are asked to discuss in small groups cases on scientists' concerns to share the data. Afterwards, small groups report to the whole group and continue with a reflective discussion involving the whole group.

Type of activity: case discussion

Time: 90 minutes

Target group: students, early career researchers, senior researchers

Blended learning options: <u>ROSiE online training course</u> \rightarrow Responsible Open Science \rightarrow Health and Life Sciences \rightarrow Responsible sharing and reuse of data and other research outputs

Learning outcomes:

Learning outcomes It is expected that trainees will:	Indicators for their achievement Trainees who have fully met the learning outcome are able to:
 be aware about factors influencing willingness to share and use open research data 	 discuss how to increase willingness to share and use open research data
 apply critical thinking skills - questioning, comparing, summarizing, drawing conclusions, and defending - to case studies on ethics and integrity in OS 	 develop reflective questions to define ethical problems in the case study discuss cases with colleagues justify a personal position on the case

PROCEDURE

- Depending on the size of the group and background of the trainees choose how many cases to discuss during the workshop. There are three cases included in the file "HL_U6A6.1 Handout". You can also choose to watch one of the cases in the classroom - animation of the case is available on the <u>ROSiE Knowledge Hub</u>.
- 2. Introduce the activity, its aim and, briefly, the procedure.
- 3. Ask trainees to split in small groups (4-5 trainees in a group) and to choose a rapporteur a group member who will report results of the small group discussion to the whole group. Provide each group with a paper for taking notes.
- 4. Print out case description(s) and questions for discussion for each trainee (file "HL_U6A6.1 Handout".

- Step 1: small group discussions 30 minutes. Trainees read the case description and discuss the questions in small groups. Each group takes notes. Rapporteurs prepare to present the results to the whole group.
- 6. **Step 2**: reports from small group discussions **40 minutes**. Depending on the number of small groups, allocate a time slot for each group presentation (e.g., if there are 4 small groups, each group have 10 minutes for a presentation). Rapporteurs present the results of their group discussions.
- 7. **Step 3**: group discussion **20 minutes**. The trainer moderates a reflective group discussion. The trainer writes the ideas suggested during the discussion on the whiteboard and summarises them. Sample questions for reflective discussion are, e.g.:
 - What are the most important concerns discouraging researchers from sharing their data for reuse and to use open data created by other researchers? What are possible solutions?
 - What could be done to encourage scientists to share research data?
 - Are there any legitimate reasons not to share research data?
 - How to responsibly share and reuse data in health and life sciences?

PLANNING

Resources and equipment:

- Handout "HL_U6A6.1 Handout" and/or animations of cases available on the <u>ROSiE</u> <u>Knowledge Hub</u>
- Paper for taking notes during small group discussions
- Whiteboard for discussion notes
- Make space for the trainees to work in small groups

FURTHER READINGS

- 1. Availability of Data. Nature portfolio. <u>https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#availability-of-data</u>
- 2. Data sharing and the future of science. *Nat Commun* 9, 2817 (2018). https://doi.org/10.1038/s41467-018-05227-z
- 3. Gewin, V. (2016.) Data sharing: An open mind on open data. *Nature* 529. https://doi.org/10.1038/nj7584-117a
- Laine, H. (2017). Afraid of scooping: Case study on researcher strategies against fear of scooping in the context of open science. *Data Science Journal*. <u>https://doi.org/10.5334/dsj-2017-029</u>
- Staunton, C., Barragán, C. A., Canali, S., Ho, C., Leonelli, S., Mayernik, M., ... & Wonkham, A. (2021). Open science, data sharing and solidarity: who benefits? *History and Philosophy of the Life Sciences*, *43*(4), 115. <u>https://doi.org/10.1007/s40656-021-</u> 00468-6

 Zuiderwijk, A., Shinde, R., & Jeng, W. (2020). What drives and inhibits researchers to share and use open research data? A systematic literature review to analyze factors influencing open research data adoption. *PloS one*, *15*(9), e0239283. <u>https://doi.org/10.1371/journal.pone.0239283</u>

29 This project has received funding from the European Union's Horizon 2020 research and innovation programme under GA No 101006430

Activity 6.2. Ranalysis of data in medicine

DESCRIPTION

This activity is built around case discussion. Trainees are asked to discuss in small groups a case on reanalysis of data in medicine. Afterwards, small groups report to the whole group and continue with a reflective discussion involving the whole group.

Type of activity: case discussion

Time: 90 min.

Target group: students, early career researchers, senior researchers

Blended learning options: <u>ROSiE online training course</u> \rightarrow Responsible Open Science \rightarrow Health and Life Sciences \rightarrow Responsible sharing and reuse of data and other research outputs

Learning outcomes:

Learning outcomes It is expected that trainees will:	Indicators for their achievement Trainees who have fully met the learning outcome are able to:
 be aware of importance of reanalysis of data sets and research outputs in OS 	 explain how to responsibly and critically assess and use open data and research outputs
 apply critical thinking skills - questioning, comparing, summarizing, drawing conclusions, and defending - to case studies on ethics and integrity in OS 	 develop reflective questions to define ethical problems in the case study discuss cases with colleagues justify a personal position on the case

- 1. Introduce the activity, its aim and, briefly, the procedure.
- 2. Ask trainees to split in small groups (4-5 trainees in a group) and to choose a rapporteur a group member who will report results of the small group discussion to the whole group. Provide each group with a paper for taking notes.
- 3. Print out case description and questions for discussion for each trainee (file "HL_U6A6.2 Handout").
- Step 1: small group discussions 30 minutes. Trainees read the case description and discuss the questions in small groups. Each group takes notes. Rapporteurs prepare to present the results to the whole group.
- 5. **Step 2**: reports from small group discussions **40 minutes**. Depending on the number of the small groups, allocate a time slot for each group presentation (e.g., if

there are 4 small groups, each group has 10 minutes for a presentation). Rapporteurs present the results of their group discussions.

- 6. **Step 3**: group discussion **20 minutes**. The trainer moderates a reflective group discussion. The trainer writes the ideas suggested during the discussion on the whiteboard and summarise them. Sample questions for reflective discussion are, e.g.:
 - What is the role of data reanalysis in health and life sciences?
 - What ethical issues are important in the process of reanalysis of open data sets?
 - What are the benefits and risks of reanalysis of open data sets?

PLANNING

Resources and equipment:

- Handout "HL_U6A6.2 Handout"
- Paper for taking notes during small group discussions
- Whiteboard for discussion notes
- Make space for the trainees to work in small groups

FURTHER READINGS

1. The original study:

Keller, M. B., Ryan, N. D., Strober, M., Klein, R. G., Kutcher, S. P., Birmaher, B., ... & McCafferty, J. P. (2001). Efficacy of paroxetine in the treatment of adolescent major depression: a randomized, controlled trial. *Journal of the American Academy of Child & Adolescent Psychiatry*, *40*(7), 762-772.

https://doi.org/10.1097/00004583-200107000-00010

- 2. Bauchner, H., Golub, R. M., & Fontanarosa, P. B. (2016). Data sharing: an ethical and scientific imperative. *Jama*, *315*(12), 1238-1240. <u>https://doi.org/10.1001/jama.2016.2420</u>
- Faria, M., Spoljaric, S., & Caruso, F. (2022). Reanalysis: the forgotten sibling of reproducibility and replicability. *Nature Reviews Methods Primers*, 2(1), 1-2. <u>https://doi.org/10.1038/s43586-022-00103-z</u>
- Neutra, R. R., Cohen, A., Fletcher, T., Michaels, D., Richter, E. D., & Soskolne, C. L. (2006). Toward guidelines for the ethical reanalysis and reinterpretation of another's research. *Epidemiology*, *17*(3), 335-338. <u>https://doi.org/10.1097/01.ede.0000209464.97895.bf</u>

Unit 7. Prevention of research misconduct in the context of OS

Activity 7. Violations of research integrity in OS and their prevention

The activity aims to discuss different types of violations of research integrity in open science and their prevention. The trainees are split into five groups and their task is to reflect on potential violations and preventive measures in each particular type of open science activity. Each group shares the results of their discussions, and group work is followed by a plenary activity where all trainees have an opportunity to supplement the results of group work.

Type of activity: group work and plenary activity

Time: 90 min.

Target group: students, early career researchers, senior researchers

Blended learning options: <u>ROSiE online training course</u> \rightarrow Responsible Open Science \rightarrow Health and Life Sciences \rightarrow Prevention of research misconduct in open science

Learning outcomes:

Learning outcomes	Indicators for their achievement
It is expected that trainees will:	Trainees who have fully met the learning
	outcome are able to:
 know potential types of research misconduct in OS 	 discuss causes of violations of research integrity in OS and ways of its
	prevention

- 1. Before the exercise, print out the pages with different types of open science activities (file "HL_U7A7 Printout") and mark sections of a wall with the titles:
 - Open access publishing
 - Sharing and using open data
 - Open reproducible research, e.g., open lab notes, reproducing of research studies
 - Open science evaluation, e.g., open metrics and impact, open peer review
 - Citizen science
- 2. Ask participants to split into five groups. Assign one of the types of open science activities listed above to each group.

- 3. **Step 1:** group discussion **25 minutes**. Each group discusses the following questions in the context of the particular type of open science activities:
 - What potential violations of research integrity and ethics may arise in the context of this type of open science activities?
 - How to prevent these potential violations?

The results of the discussion should be written on paper cards/sticky notes – one potential type of violation and preventive measure on each card/sticky note and hanged on the wall under the respective type of open science activities.

4. Step 2: group work presentations and general discussion – 65 minutes. Each group presents their results in 5 minutes. After each presentation there is a general discussion where every trainee has an opportunity to suggest additional challenges and preventive measures. These additional challenges and preventive measures are written on paper cards/sticky notes and added to the respective type of open science activities.

PLANNING

Resources and equipment:

- Printout "HL_U7A7 Printout"
- Large wall or multiple pinboards to hang on printouts and results of discussions
- Empty cards & tape/sticky notes, pens/markers
- Make space for the trainees to work in small groups and to move around

FURTHER READINGS

1. Düwell, M. (2019). Open science and ethics. *Ethical Theory and Moral Practice*, 22, 1051-1053. <u>https://doi.org/10.1007/s10677-019-10053-3</u>

Activity 7.1. Inequities and potential of exploitation in OS

DESCRIPTION

This activity is built around case discussion. Trainees are asked to discuss in small groups a case on ethical issues on inequities and potential of exploitation in OS in health and life sciences, especially in the context of low- and middle- income countries. Afterwards, small groups report to the whole group and continue with a reflective discussion involving the whole group.

Type of activity: case discussion

Time: 90 min.

Target group: students, early career researchers, senior researchers

Blended learning options: <u>ROSiE online training course</u> \rightarrow Responsible Open Science \rightarrow Health and Life Sciences \rightarrow Prevention of research misconduct in open science

Learning outcomes:

Learning outcomes It is expected that trainees will:	Indicators for their achievement Trainees who have fully met the learning outcome are able to:
 know potential types of research misconduct in OS 	 discuss causes of violations of research integrity in OS and ways of its prevention
 apply critical thinking skills - questioning, comparing, summarizing, drawing conclusions, and defending - to case studies on ethics and integrity in OS 	 develop reflective questions to define ethical problems in the case study discuss cases with colleagues justify a personal position on the case

- 1. Introduce the activity, its aim and, briefly, the procedure.
- 2. Ask trainees to split in small groups (3-4 trainees in a group) and to choose a rapporteur a group member who will report results of the small group discussion to the whole group.
- 3. Print out the case description and questions for discussion for each trainee (file "HL_U7A7.1 Handout".
- 4. **Step 1**: small group discussions **30 minutes**. Trainees read the case description and discuss the questions in small groups. Rapporteurs prepare to present the results to the whole group.
- 5. **Step 2**: short reports from small group discussions **30 minutes**. Rapporteurs present the results of their group discussions.

- 6. **Step 3**: group discussion **30 minutes**. The trainer moderates a reflective group discussion. Sample questions for reflective discussion are, e.g.:
 - Based on the arguments developed during the group work, what are the best approaches for reducing risk of exploitation in the context of open science?
 - What are the best practices for protection of intellectual property when practician open science?

PLANNING

Resources and equipment:

- Handout "HL_U7A7.1 Handout"
- Paper for taking notes during small group discussions
- Whiteboard for discussion notes
- Make space for the trainees to work in small groups

FURTHER READINGS

- Bull, S., & Bhagwandin, N. (2020). The ethics of data sharing and biobanking in health research. *Wellcome Open Research*, 5. <u>https://doi.org/10.12688/wellcomeopenres.16351.1</u>
- Ross-Hellauer, T., Reichmann, S., Cole, N. L., Fessl, A., Klebel, T., & Pontika, N. (2022). Dynamics of cumulative advantage and threats to equity in open science: a scoping review. *Royal Society Open Science*, 9(1), 211032. <u>https://doi.org/10.1098/rsos.211032</u>
- Zeitlyn, D. (2003). Gift economies in the development of open source software: anthropological reflections. *Research Policy*, 32(7), 1287-1291. <u>https://doi.org/10.1016/S0048-7333(03)00053-2</u>

Unit 8. Responsible dissemination and publication practices

Activity 8. Open access publishing and predatory practices

DESCRIPTION

This activity applies the Four Quadrant Method for case analysis on predatory practices. Trainees are asked to discuss a case in small groups and fill in the four quadrant template. Afterwards, small groups report to the whole group and continue with a casuistic reasoning and justification discussion involving the whole group.

Type of activity: case discussion (Four Quadrant Method)

Time: 90 min.

Target group: students, early career researchers

Blended learning options: <u>ROSiE online training course</u> \rightarrow Responsible Open Science \rightarrow Health and Life Sciences \rightarrow Responsible dissemination and publication practices

Learning outcomes:

Learning outcomes It is expected that trainees will:	Indicators for their achievement Trainees who have fully met the learning outcome are able to:
 know criteria for good practice standards in open access publishing 	 critically assess scientific results published in open access and identify predatory publishing practices
 apply critical thinking skills - questioning, comparing, summarizing, drawing conclusions, and defending - to case studies on ethics and integrity in OS 	 develop reflective questions to define ethical problems in the case study discuss cases with colleagues justify a personal position on the case

PROCEDURE

- 1. Introduce the activity, its aim and, briefly, the procedure of the Four Quadrant Method⁴.
- 2. Print out the case description (file "HL_U8A8 Handout") for each trainee.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under GA No 101006430

⁴ Detailed description of the modified Four Quadrant Method for case analysis is provided by the EnTIRE project: Armond A.C. et al. (2019). <u>D.5.3 Delivery of the entire set of case deliberation methods and case analyses as input for the platform</u>, pp. 98-102.

- 3. Ask trainees to split in small groups (3-4 trainees in a group) and to choose a rapporteur a group member who will report results of the small group discussion to the whole group.
- 4. **Step 1.** Initial perception **20 minutes**. Trainees read the case and in small groups discuss some general questions to identify relevant aspects of the case:
 - What are the ethical issues at stake in this case?
 - Who are the stakeholders?
 - How should stakeholders react to this case?
 - What should/can stakeholders do to prevent such cases?
- 5. **Step 2.** The Four Quadrant Analysis **20 minutes**. Each group fills in the Four Quadrant table included in the file "HL_U8A8 Handout".

I. Relevant Facts : What are the most relevant facts concerning the situation?	II. Uncertainties : Which features of the situation are uncertain, lacking in clarity, or controversial?
III. Courses of Action : What are the practically available options for providing a solution to the case (how to react to the case and how to prevent such cases in the future)?	IV. Contextual Features : What legal, financial and institutional policies and regulations apply to the case?

- 1. **Step 3.** Reports from small groups **20 minutes**. The small groups report the results of the Four Quadrant Analysis to the whole group.
- 2. **Step 4.** Casuistic reasoning and justification **30 minutes**. The trainer moderates the whole group discussion on the following questions:
 - What is at issue? What is the major ethical issue at the case?
 - Do you know other cases like this one?
 - Why do academics publish their research in a predatory journal or books published by predatory publishers? What are the main factors that motivate such a practice? What are negative consequences of such a practice? What policies might minimise predatory publishing practices?
 - How should stakeholders react to cases like this?

PLANNING

Resources and equipment:

- Handout "HL_U8A8 Handout"
- Paper for taking notes during small group discussions
- Whiteboard for discussion notes
- Make space for the trainees to work in small groups

37

This project has received funding from the European Union's Horizon 2020 research and innovation programme under GA No 101006430

FURTHER READINGS

- Bartholomew, R. E. (2014). Science for sale: The rise of predatory journals. *Journal of the Royal Society of Medicine*, 107(10), 384–385. <u>https://doi.org/10.1177/0141076814548526</u>
- 2. Beall, J. (2015). Criteria for determining predatory open access publishers. https://beallslist.net/wp-content/uploads/2019/12/criteria-2015.pdf
- 3. Kurt, S. (2018). Why do authors publish in predatory journals? *Learned Publishing*, *31*(2), 141-147. <u>https://doi.org/10.1002/leap.1150</u>
- 4. The Embassy of Good Science: "Predatory publishing"

Activity 8.1. Open peer review

DESCRIPTION

This activity is built around case discussion. Trainees are asked to discuss in small groups a case on open peer review. Afterwards, small groups report to the whole group and continue with a reflective discussion involving the whole group.

Type of activity: case discussion

Time: 90 min.

Target group: early career researchers, senior researchers

Learning outcomes:

	Learning outcomes It is expected that trainees will:	Indicators for their achievement Trainees who have fully met the learning outcome are able to:
P	 be aware of importance of open peer review practices 	 explain how to responsibly and critically perform open peer review
	 apply critical thinking skills - questioning, comparing, summarizing, drawing conclusions, and defending - to case studies on ethics and integrity in OS 	 develop reflective questions to define ethical problems in the case study discuss cases with colleagues justify a personal position on the case

- 1. Introduce the activity, its aim and, briefly, the procedure.
- 2. Ask trainees to split in small groups (4-5 trainees in a group) and to choose a rapporteur a group member who will report results of the small group discussion to the whole group. Provide each group with a paper for taking notes.
- 3. Print out case description and questions for discussion for each trainee (file "HL_U8A8.1 Handout").
- 4. **Step 1**: small group discussions **30 minutes**. Trainees read the case description and discuss the questions in small groups. Each group takes notes. Rapporteurs prepare to present the results to the whole group.
- Step 2: reports from small group discussions 40 minutes. Depending on the number of the small groups, allocate a time slot for each group presentation (e.g., if there are 4 small groups, each group has 10 minutes for a presentation). Rapporteurs present the results of their group discussions.
- 6. **Step 3**: group discussion **20 minutes**. The trainer moderates a reflective group discussion. The trainer writes the ideas suggested during the discussion on the whiteboard and summarise them. Sample questions for reflective discussion are, e.g.:

- What is the role of open peer review in the scientific publishing process?
- What are the benefits and risks of open peer review?

PLANNING

Resources and equipment:

- Handout "HL_U8A8.1 Handout"
- Paper for taking notes during small group discussions
- Whiteboard for discussion notes
- Make space for the trainees to work in small groups

FURTHER READINGS

- Harms, P. D., & Credé, M. (2020). Bringing the review process into the 21st century: Post-publication peer review. *Industrial and Organizational Psychology*, *13*(1), 51-53. <u>https://doi.org/10.1017/iop.2020.13</u>
- Ross-Hellauer, T., Deppe, A., & Schmidt, B. (2017). Survey on open peer review: Attitudes and experience amongst editors, authors and reviewers. PloS One, 12(12), e0189311. <u>https://doi.org/10.1371/journal.pone.0189311</u>
- Tenorio-Fornés, Á., Tirador, E. P., Sánchez-Ruiz, A. A., & Hassan, S. (2021). Decentralizing science: Towards an interoperable open peer review ecosystem using blockchain. *Information Processing & Management*, 58(6), 102724. <u>https://doi.org/10.1016/j.ipm.2021.102724</u>
- 4. The Embassy of Good Science: "Post-publication peer review"
- 5. The Embassy of Good Science: "<u>Open peer review transparent way of gatekeeping</u> <u>science</u>"

Activity 8.2. Publishing of preprints

DESCRIPTION

This activity is built around case discussion. Trainees are asked to discuss in small groups a case on publishing preprints. Afterwards, small groups report to the whole group and continue with a reflective discussion involving the whole group.

Type of activity: case discussion

Time: 90 min.

Target group: early career researchers, senior researchers

Learning outcomes:

	Learning outcomes It is expected that trainees will:	Indicators for their achievement Trainees who have fully met the learning outcome are able to:
P	 be aware of importance of preprints in open publication process 	 explain how to responsibly and critically publish and use preprints
	 apply critical thinking skills - questioning, comparing, summarizing, drawing conclusions, and defending - to case studies on ethics and integrity in OS 	 develop reflective questions to define ethical problems in the case study discuss cases with colleagues justify a personal position on the case

PROCEDURE

- 1. Introduce the activity, its aim and, briefly, the procedure.
- 2. Ask trainees to split in small groups (4-5 trainees in a group) and to choose a rapporteur a group member who will report results of the small group discussion to the whole group. Provide each group with a paper for taking notes.
- 3. Print out case description and questions for discussion for each trainee (file "HL_U8A8.2 Handout").
- 4. **Step 1**: small group discussions **30 minutes**. Trainees read the case description and discuss the questions in small groups. Each group takes notes. Rapporteurs prepare to present the results to the whole group.
- Step 2: reports from small group discussions 40 minutes. Depending on the number of the small groups, allocate a time slot for each group presentation (e.g., if there are 4 small groups, each group has 10 minutes for a presentation). Rapporteurs present the results of their group discussions.
- 6. **Step 3**: group discussion **20 minutes**. The trainer moderates a reflective group discussion. The trainer writes the ideas suggested during the discussion on the whiteboard and summarise them. Sample questions for reflective discussion are, e.g.:

- What is the role of open peer review in the scientific publishing process?
- What are the benefits and risks of open peer review?

PLANNING

Resources and equipment:

- Handout "HL_U8A8.2 Handout"
- Paper for taking notes during small group discussions
- Whiteboard for discussion notes
- Make space for the trainees to work in small groups

FURTHER READINGS

- 1. COPE Council (2018). COPE Discussion Document: Preprints. https://doi.org/10.24318/R4WByao2
- Elmore, S. A. (2018). Preprints: what role do these have in communicating scientific results? *Toxicologic pathology*, 46(4), 364-365. <u>https://doi.org/10.1177%2F0192623318767322</u>
- Ravinetto, R. et al. (2021). Preprints in times of COVID19: the time is ripe for agreeing on terminology and good practices. *BMC Medical Ethics*, 22(1), 1-5. <u>https://doi.org/10.1186/s12910-021-00667-7</u>
- 4. Sheldon, T. (2018). Preprints could promote confusion and distortion. *Nature*, 559(7715), 445–445. <u>https://doi.org/10.1038/d41586-018-05789-4</u>

